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https://www.youtube.com/watch?v=9A-uUG0WR0w
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https://www.youtube.com/watch?v=5zI9sG3pjVU



Overview

• References: chap. 5 and 6 Çengel, chap. 2 Faber and chap. 4 
Acheson.

• Fluid dynamics deals with the relation between the motion of 
fluids considering the forces and moments which create the 
motion.

• Forces acting on fluid elements are of two types: body forces 
acting on the center of mass of the fluid element and surface 
forces acting through the surfaces. 

• For ideal fluids (zero viscosity and compressibility) the surface 
forces reduce to an isotropic pressure (Pascal’s Theorem) and the 
governing dynamical equation was derived by Euler. 

• Euler’s equation is a PDE that can be integrated along the 
streamlines and the integral is known as Bernoulli’s equation 
(Bernoulli’s first Theorem).
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Forces on a control volume

The forces acting on a control volume consist of body forces that act

throughout the entire body of the control volume (such as gravity, electric,

and magnetic forces) and surface forces that act on the control surface (such as 

pressure and viscous forces and reaction forces at points of contact).
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Body forces: 1 vector or rank 1 tensor
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Surface forces: 2 vectors or rank 2 tensor

𝜎𝑖𝑗 is the force per unit area in the direction of j through the plane (perpendicular to) i 
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Stress tensor in cartesian coordinates

The diagonal components of the stress tensor are called normal stresses; they

are composed of pressure (which always acts inwardly normal) and viscous

stresses. 

Viscous stresses are discussed in more detail later. The off-diagonal 

components, are called shear stresses; since pressure can act only normal to a 

surface, shear stresses are composed entirely of viscous stresses.
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Surface forces
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Body forces act on each volumetric portion of the control volume. The body

force acts on a differential element of fluid of volume dV within the control

volume, and we must perform a volume integral to account for the net body 

force on the entire control volume. 

Surface forces act on each portion of the control surface. A differential surface

element of area dA and unit outward normal 𝑛 is shown, along with the

surface force acting on it. We must perform an area integral to obtain the net 

surface force acting on the entire control surface.

Total force
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The linear momentum equation

• Therefore, Newton’s second law can be stated as the sum of all external
forces acting on a system is equal to the time rate of change of linear 
momentum of the system.

• Applying the Reynolds transport theorem we find



RTT (recall)

For moving and/or deforming control volumes, 

• Where the absolute velocity V in the second term is 
replaced by the relative velocity
Vr = V -VCS

• Vr is the fluid velocity expressed relative to a coordinate 
system moving with the control volume.



Newton’s law for a control volume



Water jet on
stationary plate

• The momentum equation for 
steady flow is given as

• The reaction force at the plate is
(x-direction)

Note that β=1 in this course 
(incompressible fluid).



Stress on surface
element dA, with
𝑛 ≡ (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)

From 𝑡𝑗 = 𝜎𝑖𝑗 ∙ 𝑛𝑖 we find the stress components.

• The force is the product of the stress by the area.
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The stress tensor is symmetric

• Choose axes paralel to 
the directions of a cubic
fluid element (dashed
lines)

• Consider a cubic fluid
element of side d

• Consider one face of the
cube, ABCD. The plane 
that passes through AB
has a normal in the x (1) 
direction.
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(Sec 1.3, Faber)



Balance of forces and torques

• Forces 

Normal forces are: 𝑑2 𝑝1 , 𝑑2 𝑝2 and 𝑑2 𝑝3 with three other forces acting on the opposite 
faces. The forces act on an element of fluid of volume 𝑑3. As 𝑑 → 0 the acceleration diverges 

as 
1

𝑑
unless the forces on opposite faces of the cube balance. 

• Torques

Tangencial forces:  𝑑2 𝑠21 and 𝑑2 𝑠12 produce a torque 𝑑3 (𝑠21− 𝑠12) which produces an 

angular acceleration that diverges as 
1

𝑑2
(the moment of inertia of the element of fluid scales

with the 5th power of d ) unless the torque vanishes. So 𝑠21 = 𝑠12 = 𝑠3 (Faber’s notation, 3 is
the axis of rotation). 
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Average pressure

• The average pressure is an invariant, i.e. it is the same for any
rotation. 
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Fluids at mechanical equilibrium

• At equilibrium the shear stresses vanish (otherwise there would be
flow) which implies that,

and similarly, for p3. This means that 𝑝1= 𝑝2 = 𝑝3 = 𝑝 in any frame of
reference, i.e. the pressure is a scalar field.

Pascal’s principle

The pressure is a scalar field, 𝑝(Ԧ𝑟).

22



Fluids at rest
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Variation of pressure with depth
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Does it hold in this case?



Hydraulic press
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A change in pressure at any point in an 

enclosed fluid at rest is transmitted 

undiminished to all points in the fluid.



The Euler fluid: zero viscosity 
and zero compressibility 

As a result the shear stresses are zero and the density is constant
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Euler fluid

• For an Euler fluid the continuity equation implies that

and the inviscid (zero viscosity) condition implies that the stress tensor 
reduces to a scalar isotropic pressure, p, which may vary in space (pressure 
field). 

• The surface forces acting on an element of fluid, per unit volume, are given

by −∇𝑝 (recall that the force in the x direction is −
𝜕𝑝

𝜕𝑥
).

• The forces per unit mass are then −
∇𝑝

𝜌
.

• The total force may include body terms, such as gravity, −∇𝑔𝑧.

• The Euler equation is
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(Acheson, chap. 1)



Euler fluid

• 4 equations (continuity + Euler) and 4 unknowns (u, v, w, p);

• The gravitational force, being conservative, can be written as the 
gradient of a potential (=gz):
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Euler fluid

• Euler’s equation becomes:

Identity

• We can write:
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Bernoulli streamline theorem

• If the fluid is steady,

where:

• On taking the dot product with u, we obtain

• If an ideal fluid is in steady flow, then H is constant along a streamline.

• The above theorem says nothing about H being the same constant on 
different streamlines.
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Bernoulli theorem for irrotational flow
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If an ideal fluid is in steady irrotational flow, then H 
is constant throughout the whole flow field. 



The Bernoulli equation is an approximate equation that is valid only in inviscid
regions of flow where net viscous forces are negligibly small compared to inertial, 
gravitational, or pressure forces. 

Such regions occur outside of boundary layers and wakes.
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The sum of the
kinetic, 
potential, and
flow energies
of a fluid
particle
is constant
along a 
streamline, 
during steady
flow, when
compressibility
and frictional
effects are 
negligible.
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Velocity of discharge from a large tank

38

Direct application of Bernoulli’s equation,

The discharge velocity is,



Table top experiment
Try to check this for water and oil.  
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Time of discharge of a tank
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Pitot tube
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Pitot tube

43

Application of Bernoulli’s equation,

Hydrostatic pressure at points 1 and 2,

Gives for the for the velocity at 1,
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Faber 2.10

Calculate the flow rate as a function of 𝜁𝑚𝑖𝑛



The bucket of liquid
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Faber, 2.5

Liquid mirror telescope: 
https://www.youtube.com/watch?v=Q5Cr9P-
Q88Y

1) Find the equation for 
the free surface.

2) Find the pressure for a 
constant height.
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In the steady state, the velocity profile becomes 

Vorticy

Why Euler? The velocity field above leads to zero off-diagonal components of the stress tensor (check). Thus, the viscous 
effects are not relevant and we can use the ideal fluid approximation.
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Euler’s equation

or
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Rigid body motion II (free surface of a rotating
vertical cylinder)
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In cylindrical coordinates,

From dP=0, we find the isobars

Mass conservation yields,

and



The plug-hole vortex (Faber)

Conservation of angular momentum: 
particles initially at R move to r, with angular velocity

Using the expression for the transverse
pressure gradient, 

Integration, yields for the depth at r
(measured from the height at R):
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Both the efflux of the water and the trajectory of the resulting
jet are well described by ideal fluid theory
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Another spectacular success is the theory of flight. The ideal flow
of air around a wing is able to describe the lift necessary for
flight, and much more.
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